Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jian, C.Y. | Yokobori, Jr., A. Toshimitsu;
Affiliations: Faculty of Engineering, Fracture Research Institute, Tohoku University, Aoba Aramaki, Aobaku, Sendai City #980‐8579, Japan
Note: [] Corresponding author.
Abstract: It is necessary to maintain mechanical compatibility between a blood vessel and a vascular substitute to promote encapsulation around the anastomosed part. From this point of view, using linear elastic theory, we had previously performed stress analyses at the part anastomosed by tissue adhesion, in order to propose some methods of preventing stress concentration at this junction. In this study, based on the previous analyses, we have attempted to develop a concept that can be applied under the conditions of operation. That is, the initial diameter of a vascular substitute with high rigidity is chosen larger than that of a blood vessel. This will reduce the stress concentration around the anastomosed part, on average, during expansion of the blood vessel. We analysed the optimum diameter ratio between the vascular substitute and the blood vessel which causes the least stress concentration, on average, during this process, using linear elastic theory. Furthermore, numerical analyses of blood vessel deformation were performed using various nonlinear stress–strain laws. These results were compared to the analytical solution based on linear elastic theory.
Keywords: Blood vessel, vascular substitute, anastomosed part, stress analysis, linear elastic theory, nonlinear stress–strain law
Journal: Bio-Medical Materials and Engineering, vol. 9, no. 4, pp. 219-231, 1999
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl