Purchase individual online access for 1 year to this journal.
Price: EUR 150.00
ISSN 0928-7329 (P)
ISSN
1878-7401 (E)
Impact Factor 2024: 1.4
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured.
The following types of contributions and areas are considered:
1. Original articles:
Technology development in medicine: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine.
Significance of medical technology and informatics for healthcare: The appropriateness, efficacy and usefulness deriving from the application of engineering methods, devices and informatics in medicine and with respect to public health are discussed.
2. Technical notes:
Short communications on novel technical developments with relevance for clinical medicine.
3. Reviews and tutorials (upon invitation only):
Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented.
4. Minisymposia (upon invitation only):
Under the leadership of a Special Editor, controversial issues relating to healthcare are highlighted and discussed by various authors.
Abstract: Removal of the skull from brain Magnetic Resonance (MR) images is an important preprocessing step required for other image analysis techniques such as brain tissue segmentation. In this paper, we propose a new algorithm based on the Artificial Bee Colony (ABC) optimization algorithm to remove the skull region from brain MR images. We modify the ABC algorithm using a different strategy for initializing the coordinates of scout bees and their direction of search. Moreover, we impose an additional constraint to the ABC algorithm to avoid the creation of discontinuous regions. We found that our algorithm successfully removed all bony skull…from a sample of de-identified MR brain images acquired from different model scanners. The obtained results of the proposed algorithm compared with those of previously introduced well known optimization algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) demonstrate the superior results and computational performance of our algorithm, suggesting its potential for clinical applications.
Show more
Keywords: Skull bone region, particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), MRI segmentation