Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 135.00Impact Factor 2024: 2.2
Concentrating on molecular biomarkers in cancer research, Cancer Biomarkers publishes original research findings (and reviews solicited by the editor) on the subject of the identification of markers associated with the disease processes whether or not they are an integral part of the pathological lesion.
The disease markers may include, but are not limited to, genomic, epigenomic, proteomics, cellular and morphologic, and genetic factors predisposing to the disease or indicating the occurrence of the disease. Manuscripts on these factors or biomarkers, either in altered forms, abnormal concentrations or with abnormal tissue distribution leading to disease causation will be accepted.
Authors: Liu, Xuan | Yao, Weirong | Xiong, Haiwei | Li, Qiang | Li, Yingliang
Article Type: Research Article
Abstract: BACKGROUND: Breast cancer is the most common malignant tumor and usually occurs in women. Studies have shown that lncRNA nuclear enriched abundant transcript 1 (NEAT1) contributes to breast cancer progression. This study intends to further investigate the molecular mechanism of NEAT1 in breast cancer. METHODS: The expression levels of NEAT1, miR-410-3p and Cyclin D1 (CCND1) were detected by quantitative real-time PCR (qRT-PCR) in breast cancer tissues and cells. Kaplan-Meier analysis and the log-rank test were performed to determine the relationship between NEAT1 and overall survival. Cell Counting Kit-8 (CCK-8) assay analyzed cell proliferation. Transwell assay was …performed to examine cell migration and invasion. The protein levels of CCND1 and epithelial-mesenchymal transition (EMT)-related proteins (E-cadherin, N-cadherin and Vimentin) were measured by western blot. The target relationship was predicted by bioinformatics analysis, and confirmed by luciferase reporter assay and RNA Immunoprecipitation (RIP) assay. Xenograft analysis was used to evaluate the tumor growth in vivo . RESULTS: NEAT1 and CCND1 were upregulated, while miR-410-3p was down-regulated in breast cancer tissues and cells. Higher NEAT1 expression level was associated with lower survival rate of breast cancer patients. Knockdown of miR-410-3p restored silenced NEAT1-mediated the inhibition of on proliferation, migration, invasion and EMT of breast cancer cells. In addition, NEAT1 regulated CCND1 expression by sponging miR-410-3p in breast cancer cells. NEAT1 knockdown blocked the tumor growth in vivo . CONCLUSION: NEAT1 induced breast cancer progression by regulating the miR-410-3p/CCND1 axis, indicating that NEAT1 may be a potential therapeutic target in breast cancer. Show more
Keywords: NEAT1, breast cancer, progression, miR-410-3p, CCND1
DOI: 10.3233/CBM-190721
Citation: Cancer Biomarkers, vol. 29, no. 2, pp. 277-290, 2020
Authors: Wang, Xiaoli | Zhang, Lili | Zhang, Xingfeng | Xing, Cuihong | Liu, Ruidong | Zhang, Fang
Article Type: Research Article
Abstract: INTRODUCTION: Osteosarcoma (OS), aggressive neoplasms of the bone, is the most common primary bone cancer in children. MiR-196a usually low expressed in several tumors and its functions in osteosarcoma still unclear. MATERIALS AND METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to assess the expression of miR-196a and the HOXA5. Cell metastasis and epithelial-mesenchymal transition (EMT) abilities were assessed using Transwell and western blot. The dual luciferase reporter assay was carried out to verify whether miR-196a directly targeted the 3’-untranslated region (UTR) of HOXA5 mRNA. RESULTS: MiR-196a was overexpressed and HOXA5 was …low expressed in osteosarcoma versus the non-tumor tissues and normal cell lines. Upregulation of miR-196a or downregulation of HOXA5 was associated with worse outcome of osteosarcoma patients. MiR-196a enhanced cell migration, invasion and EMT by regulating the expression of HOXA5 through directly targeting the 3’-UTR of its mRNA in osteosarcoma. HOXA5 partially reversed roles of miR-196a on metastasis and EMT in osteosarcoma. CONCLUSIONS: MiR-196a promoted cell metastasis and EMT by targeting the 3’-UTR of HOXA5 mRNA in osteosarcoma. The newly identified miR-196a/HOXA5 axis provides novel insight into the pathogenesis of osteosarcoma. Show more
Keywords: miR-196a, HOXA5, metastasis, EMT, osteosarcoma
DOI: 10.3233/CBM-201674
Citation: Cancer Biomarkers, vol. 29, no. 2, pp. 291-298, 2020
Article Type: Other
DOI: 10.3233/CBM-200905
Citation: Cancer Biomarkers, vol. 29, no. 2, pp. 299-, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl