Affiliations: [a] ANU College of Engineering and Technology, Gunture, Andhra Pradesh 522109, India | [b] Department of CSE, SVECW, Bhimavaram, West Godavari, AP, India | [c] Department of IT, RVR & JC College of Engineering, Guntur, AP, India
Abstract: The innovative trend of cloud computing is outsourcing data to the cloud servers by individuals or enterprises. Recently, various techniques are devised for facilitating privacy protection on untrusted cloud platforms. However, the classical privacy-preserving techniques failed to prevent leakage and cause huge information loss. This paper devises a novel methodology, namely the Exponential-Ant-lion Rider optimization algorithm based bilinear map coefficient Generation (Exponential-AROA based BMCG) method for privacy preservation in cloud infrastructure. The proposed Exponential-AROA is devised by integrating Exponential weighted moving average (EWMA), Ant Lion optimizer (ALO), and Rider optimization algorithm (ROA). The input data is fed to the privacy preservation process wherein the data matrix, and bilinear map coefficient Generation (BMCG) coefficient are multiplied through Hilbert space-based tensor product. Here, the bilinear map coefficient is obtained by multiplying the original data matrix and with modified elliptical curve cryptography (MECC) encryption to maintain data security. The bilinear map coefficient is used to handle both the utility and the sensitive information. Hence, an optimization-driven algorithm is utilized to evaluate the optimal bilinear map coefficient. Here, the fitness function is newly devised considering privacy and utility. The proposed Exponential-AROA based BMCG provided superior performance with maximal accuracy of 94.024%, maximal fitness of 1, and minimal Information loss of 5.977%.
Keywords: Privacy preservation, cloud computing, information loss, privacy, utility