Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sa-nguannarm, Phatarataha | Elbasani, Ermala | Kim, Jeong-Dongb; *
Affiliations: [a] Division of Computer Science and Engineering, Sun Moon University, Asan, South Korea | [b] Genome-based BioIT Convergence Institute, Sun Moon University, Asan, South Korea
Correspondence: [*] Corresponding author: Jeong-Dong Kim, Genome-based BioIT Convergence Institute, Sun Moon University, Asan, Korea. E-mail: kjdvhu@gmail.com.
Abstract: BACKGROUND: Stress is one of the critical health factors that could be detected by Human Activity Recognition (HAR) which consists of physical and mental health. HAR can raise awareness of self-care and prevent critical situations. Recently, HAR used non-invasive wearable physiological sensors. Moreover, deep learning techniques are becoming a significant tool for analyzing health data. OBJECTIVE: In this paper, we propose a human lifelog monitoring model for stress behavior recognition based on deep learning, which analyses stress levels during activity. The proposed approach considers activity and physiological data for recognizing physical activity and stress levels. METHODS: To tackle these issues, we proposed a model that utilizes hand-crafted feature generation techniques compatible with a Bidirectional Long Short-Term Memory (Bi-LSTM) based method for physical activity and stress level recognition. We have used a dataset called WESAD, collected using wearable sensors for model evaluation. This dataset presented four levels of stress emotion, including baseline, amusement, stress, and meditation. RESULTS: The following results are from the hand-crafted feature approaches compatible with the bidirectional LSTM model. The proposed model achieves an accuracy of 95.6% and an F1-score of 96.6%. CONCLUSION: The proposed HAR model efficiently recognizes stress levels and contributes to maintaining physical and mental well-being.
Keywords: Human activity recognition, stress behavior recognition, bidirectional long short-term memory, recurrent neural network, deep learning
DOI: 10.3233/THC-235002
Journal: Technology and Health Care, vol. 31, no. 5, pp. 1997-2007, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl