Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Choudhury, Avishek
Affiliations: School of Systems and Enterprises, Stevens Institute of Technology, Castle Point, Hoboken, NJ, 07030, USA | E-mail: achoudh7@stevens.edu
Correspondence: [*] Corresponding author: School of Systems and Enterprises, Stevens Institute of Technology, Castle Point, Hoboken, NJ, 07030, USA. E-mail: achoudh7@stevens.edu.
Abstract: BACKGROUND: Pleural Mesothelioma (PM) is an unusual, belligerent tumor that rapidly develops into cancer in the pleura of the lungs. Pleural Mesothelioma is a common type of Mesothelioma that accounts for about 75% of all Mesothelioma diagnosed yearly in the U.S. Diagnosis of Mesothelioma takes several months and is expensive. Given the risk and constraints associated with PM diagnosis, early identification of this ailment is essential for patient health. OBJECTIVE: In this study, we use artificial intelligence algorithms recommending the best fit model for early diagnosis and prognosis of Malignant Pleural Mesothelioma (MPM). METHODS: We retrospectively retrieved patients’ clinical data collected by Dicle University, Turkey and applied multilayered perceptron (MLP), voted perceptron (VP), Clojure classifier (CC), kernel logistic regression (KLR), stochastic gradient decent (SGD), adaptive boosting (AdaBoost), Hoeffding tree (VFDT), and primal estimated sub-gradient solver for support vector machine (s-Pegasos). We evaluated the models, compared and tested them using paired t-test (corrected) at 0.05 significance based on their respective classification accuracy, f-measure, precision, recall, root mean squared error, receivers’ characteristic curve (ROC), and precision-recall curve (PRC). RESULTS: In phase 1, SGD, AdaBoost.M1, KLR, MLP, VFDT generate optimal results with the highest possible performance measures. In phase 2, AdaBoost, with a classification accuracy of 71.29%, outperformed all other algorithms. C-reactive protein, platelet count, duration of symptoms, gender, and pleural protein were found to be the most relevant predictors that can prognosticate Mesothelioma. CONCLUSION: This study confirms that data obtained from biopsy and imaging tests are strong predictors of Mesothelioma but are associated with a high cost; however, they can identify Mesothelioma with optimal accuracy.
Keywords: Mesothelioma, predictive modeling, decision support system, machine learning, artificial intelligence, lung cancer
DOI: 10.3233/THC-202237
Journal: Technology and Health Care, vol. 29, no. 1, pp. 45-58, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl