Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mijovic, Budimir; 1 | Liepsch, Dieter; *
Affiliations: Laboratory for Biofluid Mechanics, University of Applied Sciences, Munich, Germany
Correspondence: [*] Corresponding author: Prof. Dr.-Ing. habil. Dieter Liepsch, University of Applied Sciences, Lothstr. 34, 80335 Munich, Germany.
Note: [1] Permanent address: Budimir Mijovic, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia.
Abstract: To determine the causes and history of atherosclerosis it is necessary to understand the hemodynamic parameters of blood circulation. Hemodynamic parameters play an important role in the formation of atherosclerotic plaques, especially near bends and bifurcations where the flow separates from the wall. Here the flow is laminar and non-axial with eddies, secondary flow, flow separation and stagnation points. Stenoses are found predominantly in flow separation areas. Therefore, it is important to separately study the following flow parameters: steady and pulsatile flow, wall elasticity and non-Newtonian flow behavior of blood. A simplified silicon elastic y-model simulating the human carotid artery was used for the analysis of these parameters. This model can be used for numerical studies as well. Flow was visualized at steady flow using dyes and at pulsatile flow with a photoelastic apparatus and a birefringent solution. The local axial velocity at steady and pulsatile flow was determined with a one-component Laser-Doppler-Anemometer (LDA). Pulsatile flow was generated by a piston membrane pump. A glycerin-water solution was used to simulate the Newtonian flow behavior of blood. A DMSO-Separan water solution was used to simulate the non-Newtonian flow behavior. Pulsatile flow creates higher and lower shear rates so called oscillating shear rate compare to steady flow depending on the velocity amplitude. The non-Newtonian fluid showed a markedly different flow behavior than the Newtonian fluid especially in areas of flow separation. Shear gradients were calculated from these velocity measurements using a bicubic spline interpolation. Shear stresses were calculated from these velocity shear gradients and the viscosity of the non-Newtonian fluid at these shear gradients. At special areas, high shear stresses > 10 Pa were found. The elasticity of the model wall also influences the flow behavior. The measurements showed that the characteristics of pulsatile flow and the elasticity of the model wall should be observed concomitantly. This paper presents the steady and pulsatile flow with a Newtonian and non-Newtonian fluid in an elastic model.
DOI: 10.3233/THC-2003-11204
Journal: Technology and Health Care, vol. 11, no. 2, pp. 115-141, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl