Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: First International Conference on Biomedical Spectroscopy: From molecules to men, Cardiff, UK, 7–10 July 2002, Part II
Article type: Research Article
Authors: Huleihel, Mahmoud; | Salman, Ahmad | Talyshinsky, Marina | Souprun, Yelena | Erukhimovitch, Vitaly
Affiliations: The Institute for Applied Biosciences, Ben‐Gurion University of the Negev, Beer‐Sheva, Israel | Department of Physics, Ben‐Gurion University of the Negev, Beer‐Sheva, Israel
Note: [] Corresponding author: Dr. M. Huleihel, The Institutes for Biosciences, Ben‐Gurion University of the Negev, P.O. Box 653, Beer‐Sheva 84105, Israel. Tel.: +972 8 6461999; Fax: +972 8 6472970; E‐mail: mahmoudh@bgumail.bgu.ac.il.
Abstract: In the present study we used microscopic Fourier‐Transform Infrared spectroscopy (FTIR) to investigate and to detect malignant cells which were transformed in culture by murine sarcoma virus (MuSV) or obtained from human leukemic patients. The advantage of microscopic FTIR spectroscopy over conventional FTIR spectroscopy is that it facilitates inspection of restricted regions of cell culture or the tissue. Our results showed significant and consistent differences between the various tested normal cells (primary cells and cell lines obtained from different origins) and malignant cells either transformed by MuSV or obtained from human leukemic patients. A considerable decrease in carbohydrates and phosphates levels was seen in malignant cells compared to the normal cells. In addition, the peak attributed to the PO2− symmetric stretching mode at 1082 cm−1 in normal cells was shifted significantly to 1087 in malignant cells. Furthermore, treatment of the leukemic patients with appropriate chemotherapy could be detected easily by FTIR spectroscopy; the spectral absorbance of the cells from the treated leukemic patients became very similar to normal lymphocytes. These results in addition to further differences in the shapes of various bands throughout the spectrum strongly support the possibility of developing the FTIR microscopy for the detection and study of malignant cells and probably as indication for successful treatment.
Journal: Spectroscopy, vol. 17, no. 2-3, pp. 469-476, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl