Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Abdel‐Aal, R.E.; | Raashid, M.
Affiliations: Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
Note: [] Corresponding author: R.E. Abdel‐Aal, P.O. Box 1759, KFUPM, Dhahran 31261, Saudi Arabia. Fax: + 966 3 860 4281; E‐mail: radwan@kfupm.edu.sa.
Abstract: Turbo molecular vacuum pumps constitute a critical component in many accelerator installations, where failures can be costly in terms of both money and lost beam time. Catastrophic failures can be averted if prior warning is given through a continuous online monitoring scheme. This paper describes the use of modern machine learning techniques for online monitoring of the pump condition through the measurement and analysis of pump vibrations. Abductive machine learning is used for modeling the pump status as ‘good’ or ‘bad’ using both radial and axial vibration signals measured close to the pump bearing. Compared to other statistical methods and neural network techniques, this approach offers faster and highly automated model synthesis, requiring little or no user intervention. Normalized 50‐channel spectra derived from the low frequency region (0–10 kHz) of the pump vibration spectra provided data inputs for model development. Models derived by training on only 10 observations predict the correct value of the logical pump status output with 100% accuracy for an evaluation population as large as 500 cases. Radial vibration signals lead to simpler models and smaller errors in the computed value of the status output. Performance is comparable with literature data on a similar diagnosis scheme for compressor valves using neural networks.
Keywords: Vibration monitoring and diagnostics, statistical vibration analysis, turbo molecular pumps, machine learning, abductive networks
Journal: Shock and Vibration, vol. 6, no. 5-6, pp. 253-265, 1999
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl