Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: International Conference on Structural Engineering Dynamics – ICEDyn 2011
Article type: Research Article
Authors: Buff, H. | Friedmann, A. | Koch, M. | Bartel, T. | Kauba, M.
Affiliations: Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt, Germany
Note: [] Corresponding author: H. Buff, Fraunhofer Institute for Structural Durability and System Reliability LBF, Bartningstraße 47, 64289 Darmstadt, Germany. E-mail: hendrik.buff@lbf.fraunhofer.de
Abstract: Structural Health Monitoring (SHM) has reached a high importance in numerous fields of civil and mechanical engineering. Promising damage detection approaches like the Damage Index Method, Gapped Smoothing Technique and Modal Strain Energy Method require the structure's mode shapes [1]. Long term modal data acquisition on real life structures requires a computational efficient system based on a measuring method that can easily be installed. Systems using the Random Decrement Method (RDM) are composed of a decentralized network of smart acceleration sensors applied for both, triggering and pure measuring. They allow the reduction of cabling effort and computational costs to a minimum. In order to design a RDM measuring network efficiently, an approved procedure for defining hardware as well as measuring settings is required. In addition, optimal sensor positions have to be defined. However, today those decisions are mostly based on expert's knowledge. In this paper a systematic and analytical procedure for defining the hardware requirements and measuring settings as well as optimal sensor positions is presented. The proposed routine uses the outcome of an Experimental Modal Analysis (EMA). Due to different requirements for triggering and non-triggering sensors in the RDM network a combination of two approaches for sensor placement has to be used in order to find the best distribution of measurement points over the structure. A controllability based technique is used for placing triggering sensors, whereas the Effective Independence (EI) is utilized for the placement of non-triggering sensors. The combination of these two techniques selects the best set of measuring points for a given number of sensors out of all possible sensor positions. Damage detection itself is not considered within the scope of this paper.
Keywords: Structural health monitoring, test planning, effective independence
DOI: 10.3233/SAV-2012-0687
Journal: Shock and Vibration, vol. 19, no. 5, pp. 787-794, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl