Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Scavuzzo, R.J. | Hill, G.D. | Saxe, P.W.
Affiliations: Professor of Mechanical Engineering Emeritus, The University of Akron, Akron, OH, USA | Alion Science and Technology, 4300 King St., Suite 101, Alexandria, VA, USA
Note: [] Corresponding author. E-mail: RSCRUD@aol.com
Abstract: In this paper, a detailed model of a ship deck and attached dynamic systems was developed and subjected to dynamic studies using two different shock inputs: a triangular shaped velocity pulse and the vertical motion of the innerbottom of the standard Floating Shock Platform (FSP). Two studies were conducted, one considering four single degree-of-freedom systems attached at various deck locations and another considering a three-mass system attached at one location. The two shock inputs were used only for the multi-mass system study. The triangular pulse was used for the four single degree-of-freedom systems study. For the single degree-of-freedom systems study, shock spectra were first calculated at the four mounting locations assuming the oscillators were not present. Then the oscillator systems were added to these grid points to determine the change in the shock spectra. First, the oscillators were added one at a time, and then all the oscillators were added to the deck. The multi-mass system was analyzed using both shock inputs. First, the fixed-base modal masses and frequencies were determined. Then, the system as a whole was attached to the deck and the spectrum values at the base point were determined and compared to those for the free deck case. In the last step each mode of the multi-mass system, represented by a single degree-of-freedom system with the modal mass and appropriate spring stiffness, was considered individually to determine the spectrum responses. Results of the free deck, the entire system and individual modal responses are compared.
Keywords: Spectrum dip, DDAM, ship shock
DOI: 10.3233/SAV-2010-0498
Journal: Shock and Vibration, vol. 17, no. 1, pp. 55-69, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl