Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sebastianelli, Robert; | Austin, Mark A.
Affiliations: Institute for Systems Research, University of Maryland, College Park, MD 20742, USA | Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
Note: [] Corresponding author. E-mail: austin@umd.edu
Abstract: In the performance-based design of earthquake-resistant structures, researchers have recently proposed protection systems where base isolation devices are supplemented by active control mechanisms. Established approaches to understanding this problem domain rely on numerical and experimental analyses, which have the disadvantage of obscuring potential insight into cause-and-effect relationships existing between parameters of sub-optimal control and their affect on linear and nonlinear system response. As a first step toward mitigating this limitation, this paper explores the role of symbolic analysis in understanding how sub-optimal bang-bang control mechanisms depend on design objectives and their impact on performance of base isolated structures. New results are obtained through three avenues of investigation: (1) Single- and two-degree-of-freedom systems, (2) Restricted classes of multi-degree-of-freedom systems, and (3) Sensitivity of parameters in modified bang-bang control to localized nonlinear deformations in the base isolation devices. The principle outcome is matrices of symbolic expressions for bang-bang control expressed in terms of the structural system parameters and state. We identify modeling constraints and limits (e.g., perfect isolation) where lengthy symbolic expressions simplify to the point where relationships between the inner workings of the bang-bang control strategy and specific design objectives become evident.
Keywords: Base isolation, symbolic analysis, sub-optimal bang-bang control
DOI: 10.3233/SAV-2009-0461
Journal: Shock and Vibration, vol. 16, no. 2, pp. 195-211, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl