Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Issue on Semantic Deep Learning
Guest editors: Dagmar Gromann, Luis Espinosa Anke and Thierry Declerck
Article type: Research Article
Authors: Alirezaie, Marjana; * | Längkvist, Martina | Sioutis, Michaelb | Loutfi, Amya
Affiliations: [a] Center for Applied Autonomous Sensor Systems, Orebro University, Örebro, Sweden | [b] Department of Computer Science, Aalto University, Espoo, Finland
Correspondence: [*] Corresponding author. E-mail: Marjan.Alirezaie@oru.se.
Abstract: Understanding why machine learning algorithms may fail is usually the task of the human expert that uses domain knowledge and contextual information to discover systematic shortcomings in either the data or the algorithm. In this paper, we propose a semantic referee, which is able to extract qualitative features of the errors emerging from deep machine learning frameworks and suggest corrections. The semantic referee relies on ontological reasoning about spatial knowledge in order to characterize errors in terms of their spatial relations with the environment. Using semantics, the reasoner interacts with the learning algorithm as a supervisor. In this paper, the proposed method of the interaction between a neural network classifier and a semantic referee shows how to improve the performance of semantic segmentation for satellite imagery data.
Keywords: Deep neural network, semantic referee, ontological and spatial reasoning, semantic segmentation, ontocity, geo data
DOI: 10.3233/SW-190362
Journal: Semantic Web, vol. 10, no. 5, pp. 863-880, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl