Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dubbs, Alexander
Affiliations: University of Michigan, Ann Arbor, MI 48109, USA | E-mail: alex.dubbs@gmail.com
Abstract: We use a simple machine learning model, logistically-weighted regularized linear least squares regression, in order to predict baseball, basketball, football, and hockey games. We do so using only the thirty-year record of which visiting teams played which home teams, on what date, and what the final score was. No real statistics are used, although a statistical method is used. The method works best in basketball, likely because it is high-scoring and has long seasons. It works better in football and hockey than in baseball, but in baseball the predictions are closer to a theoretical optimum. The football predictions, while good, can in principle be made much better, and the hockey predictions can be made somewhat better. These findings tells us that in basketball, most statistics are subsumed by the scores of the games, whereas in football, further study of game and player statistics is necessary to predict games as well as can be done. Baseball and hockey lie somewhere in between.
Keywords: Sports prediction, ridge regression
DOI: 10.3233/MAS-180428
Journal: Model Assisted Statistics and Applications, vol. 13, no. 2, pp. 173-181, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl