Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rabaa’i, Ahmad A.* | Zhu, Xiaodi | Jayaraman, J.D. | Nguyen, Thi D.M. | Jha, Preeta P.
Affiliations: School of Business, New Jersey City University, New Jersey, NJ, USA
Correspondence: [*] Corresponding author: Ahmad A. Rabaa’i, School of Business, New Jersey City University, New Jersey, NJ, USA. E-mail: arabaai@njcu.edu.
Abstract: The popularity of mobile food delivery apps (MFDAs) and the online food delivery industry surged during the COVID-19 epidemic. Despite the explosive growth in the use of these apps, relatively limited research has been done to determine what affects their continuous use. This study predicts the continuous use of MFDAs and explores the variables that influence this utilization using a novel machine learning (ML) based approach. The machine learning models included four distinct constructs (i.e., features): perceived compatibility, convenience, online reviews, and delivery experience. These features were measured using a survey instrument. Eight different machine learning (ML) models, ranging from basic decision trees to neural networks, were deployed. All eight models achieved high prediction accuracy of above 93%, with the CatBoost model having the highest accuracy among them at 98%. Feature importance analysis revealed perceived compatibility to be the most important factor impacting the continuous usage of MFDAs followed by convenience, online reviews, and delivery experience respectively. The study’s findings have ramifications for MFDA marketing and design. Given the significance of perceived compatibility, MFDA marketing campaigns should have a strong emphasis on highlighting how well these apps fit with the users’ lifestyles.
Keywords: Continuous intention, COVID-19, food delivery apps, machine learning
DOI: 10.3233/MAS-220405
Journal: Model Assisted Statistics and Applications, vol. 17, no. 4, pp. 247-258, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl