Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: P. Dibal, Nicholasa; * | Dallah, Hamadub
Affiliations: [a] Department of Mathematical Sciences, University of Maiduguri, Maiduguri, Nigeria | [b] Department of Actuarial Science, University of Lagos, Lagos, Nigeria
Correspondence: [*] Corresponding author: Nicholas P. Dibal, Department of Mathematical Sciences, University of Maiduguri, Nigeria. Tel.: +234 8065558591; E-mail: pndibal@unimaid.edu.ng.
Abstract: Observations on certain real-life cases include units that are incompatible with other data sets. Values that are extreme in nature do influence estimates obtained by conventional estimators. Robust estimators are therefore necessary for efficient estimation of parameters. This paper uses stratification with simple random sampling without replacement to optimize sample allocation in stratum for efficient parameter estimation as an alternative method of handling highly contaminated samples. Our proposed method stratifies the highly contaminated population into two non-overlapping sub-populations, and stratified samples of sizes 50, 200, and 500 was drawn. We estimate the model parameters form the contaminated sampled data using ordinary least squares under the proposed method, and using the two high breakdown point estimators; the Least Median of Squares and Least Trimmed Squares. Our findings shows that the proposed method did not perform well for low contamination levels (⩽ 30%) but outperformed Least Median of Squares and Least Trimmed Squares for higher contamination rates (⩾ 40%). This indicates that our proposed method compares well and compete favorably with the two high breakdown point estimators.
Keywords: Stratification, contamination, high breakdown point, ordinary least squares
DOI: 10.3233/MAS-210523
Journal: Model Assisted Statistics and Applications, vol. 16, no. 2, pp. 109-115, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl