Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Abd El-Wahab, M.a | El-Desouky, M.G.b; *
Affiliations: [a] Faculty of Science, Suez Canal University, Ismailia, Egypt | [b] Faculty of Science, Port Said University, Port Fuad, Egypt
Correspondence: [*] Corresponding author: M.G. El-Desouky, Faculty of Science, Port Said University, Port Fuad, Egypt. E-mails: ch.moh.gamal@gmail.com; mohamed.eldesoky@EPP-EG.com.
Abstract: In this study, we show that organic peroxide is a useful tool for breaking the viscosity or chain of polypropylene during melt processing to provide a regulated rheology product. Reactive extrusion is used to crosslink peroxide and combine it with polypropylene (PP). To achieve end-use applications with performance targets, stabilizers are required to preserve the polymer’s initial strength, flexibility, and toughness properties. Other additives are added to PP in addition to stabilization in order to enhance or change certain of its properties. With the addition of varying levels of organic peroxide [2,5-Dimethyl-2,5-di (tert-butyl peroxy) hexane]. The use of peroxide in the manufacturing process of polypropylene is a method of breaking in the polymer chains, which can affect its properties, including its MFI. It is possible that increasing the amount of peroxide used leads to a higher degree of branching or cross-linking, which in turn leads to a higher MFI value. However, it is important to note that the relationship between the amount of peroxide used and the resulting MFI values may not be linear and may depend on other factors as well. In addition to the MFI, other properties of the polypropylene were also measured, including shear and melt flow index, melting and crystallization temperatures, flexural and tensile moduli, and yield stress. These properties are important for understanding the mechanical and thermal behavior of the polymer and can be used to optimize its performance for specific applications.
Keywords: Polypropylene, peroxide, extrusion, compounding, plastic antioxidants, extrusion and polymer degradation, plastic additives
DOI: 10.3233/MGC-230024
Journal: Main Group Chemistry, vol. 23, no. 2, pp. 145-156, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl