Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Debatin, Maurice* | Hesser, Jürgen
Affiliations: Department of Radiation Oncology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
Correspondence: [*] Corresponding author: Maurice Debatin, Department of Radiation Oncology, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany. Tel.: +49 621 383 6914; Fax: +49 621 383 5140; E-mail:maurice.debatin@medma.uni-heidelberg.de
Abstract: BACKGROUND: Reducing the amount of time for data acquisition and reconstruction in industrial CT decreases the operation time of the X-ray machine and therefore increases the sales. This can be achieved by reducing both, the dose and the pulse length of the CT system and the number of projections for the reconstruction, respectively. OBJECTIVE: In this paper, a novel generalized Anisotropic Total Variation regularization for under-sampled, low-dose iterative CT reconstruction is discussed and compared to the standard methods, Total Variation, Adaptive weighted Total Variation and Filtered Backprojection. METHOD: The novel regularization function uses a priori information about the Gradient Magnitude Distribution of the scanned object for the reconstruction. We provide a general parameterization scheme and evaluate the efficiency of our new algorithm for different noise levels and different number of projection views. RESULTS: When noise is not present, error-free reconstructions are achievable for AwTV and GATV from 40 projections. In cases where noise is simulated, our strategy achieves a Relative Root Mean Square Error that is up to 11 times lower than Total Variation-based and up to 4 times lower than AwTV-based iterative statistical reconstruction (e.g. for a SNR of 223 and 40 projections). CONCLUSION: To obtain the same reconstruction quality as achieved by Total Variation, the projection number and the pulse length, and the acquisition time and the dose respectively can be reduced by a factor of approximately 3.5, when AwTV is used and a factor of approximately 6.7, when our proposed algorithm is used.
Keywords: X-ray tomography, low-dose, under-sampling, iterative CT reconstruction, Gradient Magnitude Distribution
DOI: 10.3233/XST-150522
Journal: Journal of X-Ray Science and Technology, vol. 23, no. 6, pp. 701-726, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl