Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Elliott, J. C. | Anderson, P. | Gao, X. J. | Wong, F. S. L. | Davis, G. R. | Dowker, S. E. P.
Affiliations: Department of Child Dental Health, The London Hospital Medical College, Turner St, London El 2AD, United Kingdom | Department of Conservative Dentistry, The London Hospital Medical College, Turner St, London El 2AD, United Kingdom
Note: [] Present address: Dept. of Paediatric Dentistry, School of Stomatology, Beijing Medical University, Weigongcun, Beijing, 100081, PR China.
Abstract: In scanning microradiography (SMR), a thin section is stepped across a 15-μm diameter X-ray beam and the transmitted intensity measured at each point. This technique has permitted more accurate measurements of the spatial variation of the mineral concentration in sections of dentin and enamel than conventional photographic microradiography. Moreover, because the section is not in close contact with an emulsion, SMR allows continuous study while the specimen is bathed in a reaction solution. The present studies have been particularly directed to gaining an understanding of the formation and repair of carious lesions in teeth: one particular puzzle is subsurface demineralization, in which the initial loss of mineral appears to take place some 20 to 50 μm below the tooth surface. SMR studies are reported here on the demineralization in dilute acids and the subsequent partial remineralization in supersaturated calcium phosphate solutions in model systems for dental caries. In order to develop a theoretical model for de- and remineralization of carious lesions, it is necessary to quantify transport processes within the tooth. To this end, we are developing a method of measuring effective diffusion coefficients of strongly X-ray-absorbing ions in water within permeable solids in which the diffusion coefficient varies with position. The method uses sequential concentration/distance profiles determined by SMR. As a test, diffusion coefficients of potassium iodide in water within a permeable glass frit have been measured. X-ray microtomography (XMT) can be carried out by adding an axis of rotation to the SMR apparatus. Using this method, linear absorption coefficients, and hence mineral concentrations, can be measured in 15 X 15 X 15-μm3 voxels. This has advantages over SMR in that superposition within the depth of the section and errors in determining its thickness are avoided. XMT studies of de- and remineralization similar to those described above for SMR, and also XMT studies of the variation in mineral concentration in the cortical bone of a rat femur along its length, are reported.
DOI: 10.3233/XST-1994-4204
Journal: Journal of X-Ray Science and Technology, vol. 4, no. 2, pp. 102-117, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl