Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gayatri, Erapanenia | Aarthy, S.L.b; *
Affiliations: [a] SCORE, Vellore Institute of Technology, Vellore, Tamil Nadu, India | [b] SCOPE, Vellore Institute of Technology, Vellore, Tamil Nadu, India
Correspondence: [*] Corresponding author: S.L. Aarthy, Associate Professor – SCOPE, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India. E-mail: aarthy.sl@vit.ac.in.
Abstract: BACKGROUND:With the rapid growth of Deep Neural Networks (DNN) and Computer-Aided Diagnosis (CAD), more significant works have been analysed for cancer related diseases. Skin cancer is the most hazardous type of cancer that cannot be diagnosed in the early stages. OBJECTIVE:The diagnosis of skin cancer is becoming a challenge to dermatologists as an abnormal lesion looks like an ordinary nevus at the initial stages. Therefore, early identification of lesions (origin of skin cancer) is essential and helpful for treating skin cancer patients effectively. The enormous development of automated skin cancer diagnosis systems significantly supports dermatologists. METHODS:This paper performs a classification of skin cancer by utilising various deep-learning frameworks after resolving the class Imbalance problem in the ISIC-2019 dataset. A fine-tuned ResNet-50 model is used to evaluate the performance of original data, augmented data, and after by adding the focal loss. Focal loss is the best technique to solve overfitting problems by assigning weights to hard misclassified images. RESULTS:Finally, augmented data with focal loss is given a good classification performance with 98.85% accuracy, 95.52% precision, and 95.93% recall. Matthews Correlation coefficient (MCC) is the best metric to evaluate the quality of multi-class images. It has given outstanding performance by using augmented data and focal loss.
Keywords: Medical images, skin cancer, ResNet-50, data augmentation, highly imbalance dataset
DOI: 10.3233/XST-230204
Journal: Journal of X-Ray Science and Technology, vol. 32, no. 1, pp. 53-68, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl