Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Qiana; * | Megherbi, Najlac | Breckon, Toby P.a; b
Affiliations: [a] Department of Computer Science, Durham University, United Kingdom | [b] Department of Engineering, Durham University, United Kingdom | [c] School of Engineering, Cranfield University, United Kingdom
Correspondence: [*] Corresponding author: Qian Wang, Department of Computer Science, Durham University, United Kingdom. E-mails: qian.wang@durham.ac.uk and qian.wang173@hotmail.com
Abstract: BACKGROUND:Threat Image Projection (TIP) is a technique used in X-ray security baggage screening systems that superimposes a threat object signature onto a benign X-ray baggage image in a plausible and realistic manner. It has been shown to be highly effective in evaluating the ongoing performance of human operators, improving their vigilance and performance on threat detection. OBJECTIVE:With the increasing use of 3D Computed Tomography (CT) in aviation security for both hold and cabin baggage screening a significant challenge arises in extending TIP to 3D CT volumes due to the difficulty in 3D CT volume segmentation and the proper insertion location determination. In this paper, we present an approach for 3D TIP in CT volumes targeting realistic and plausible threat object insertion within 3D CT baggage images. METHOD:The proposed approach consists of dual threat (source) and baggage (target) volume segmentation, particle swarm optimisation based insertion determination and metal artefact generation. In our experiments, real baggage data collected from airports are used to generate TIP volumes for evaluation. We also propose a TIP quality score metric to automatically estimate the quality of generated TIP volumes. RESULT:In our experiments with real baggage CT volumes and varying threat items, 90.25% of the generated TIP volumes are graded as good by human evaluation, 7% of them are of medium quality with minor flaws and 2.75% of them are bad. CONCLUSION:Qualitative evaluations on real 3D CT baggage imagery show that our approach is able to generate realistic and plausible TIP which are indiscernible from real CT volumes and the TIP quality scores are consistent with human evaluations.
Keywords: Threat image projection, X-ray computed tomography, CT volume segmentation, Baggage security screening, Particle swarm optimisation, TIP quality score
DOI: 10.3233/XST-200654
Journal: Journal of X-Ray Science and Technology, vol. 28, no. 3, pp. 507-526, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl