Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Hui | Xu, Yanan | Shi, Hongli; *
Affiliations: School of Biomedical Engineering, Capital Medical University, Beijing, China
Correspondence: [*] Corresponding author: Hongli Shi, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China. E-mail: shl@ccmu.edu.cn.
Abstract: PURPOSE:Metal artifacts severely degrade CT image quality in clinical diagnosis, which are difficult to removed, especially for the beam hardening artifacts. The metal artifact reduction (MAR) based on prior images are the most frequently-used methods. However, there exists a lot misclassification in most prior images caused by absence of prior information such as the spectrum distribution of X-ray beam source, especially many or big metal included. The purpose of this work is to find a more accurate prior image to improve image quality. METHODS:The proposed method comprise of following four steps. First, the metal image is segmented by thresholding an initial image, where the metal traces are identified in the initial projection data using the forward projection of the metal image. Second, the accurate absorbent model of certain metal image is calculated according to the spectrum distribution of certain X-ray beam source and energy-dependent attenuation coefficients of metal. Then, a new metal image is reconstructed by the general analytical reconstruction algorithm such as filtered back projection (FPB). The prior image is obtained by segmenting the difference image between the initial image and the new metal image into air, tissue and bone. Finally, the initial projection data are normalized by dividing the projection data of prior image pixel to pixel, the corrected image is obtained by interpolation, denormalization and reconstruction. RESULTS:Some clinical images with dental fillings and knee prostheses are used to evaluate the proposed algorithm and normalized metal artifact reduction (NMAR) and linear interpolation (LI) method. The results demonstrate the artifacts can be reduced efficiently by the proposed method. CONCLUSIONS:The proposed method could obtain an exact prior image using the prior information about X-ray beam source and energy-dependent attenuation coefficients of metal. As a result, the better performance of reducing beam hardening artifacts can be improved, even though there were many or big implants. Moreover, the process of the proposed method is rather simple and little extra calculation burden is necessary. It has superiorities over other algorithms when include big or many implants.
Keywords: X-ray CT, metal artifact, beam hardening, LI, NMAR
DOI: 10.3233/XST-17325
Journal: Journal of X-Ray Science and Technology, vol. 26, no. 4, pp. 593-602, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl