Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Cai, Weixing | Ning, Ruola | Conover, David
Affiliations: Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
Note: [] Corresponding author: Weixing Cai, Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue Box 648, Rochester, NY, USA. Tel.: +1 585 275 1349; Fax: +1 585 276 0373; E-mail: weixing_cai@urmc.rochester.edu
Abstract: In flat-panel detector-based cone beam CT breast imaging (CBCTBI) systems, scattering is an important factor that degrades image quality. It is not practical to measure the scattering profiles of a breast for all view angles in a patient study, but it is possible to develop a method to estimate the scattering profiles based on information acquired from breast phantom studies. A new scattering correction method is proposed for clinical CBCTBI in this study. The scattering profiles of three anthropomorphic uncompressed breast phantoms of different sizes were thoroughly investigated, and the results indicated that though phantom size differed, the scattering profiles were mainly determined by local breast diameters, which are the approximate diameters of coronal slices that are perpendicular to the nipple-to-chestwall direction. Thus for scattering correction purposes it is possible to establish a relationship between location breast diameters and local scattering profiles, namely the fitted smooth curves of scatter-to-primary ratios (SPR) and normalized scattered radiations (NSR). In clinical CBCTBI studies, after the local breast diameters are sampled and measured on projection images, the scattering image for every projection image can be generated based on the established relationship, and the projection images can be corrected using either the SPR based method or the NSR based method. Phantom studies and clinical studies showed that both the SPR and NSR methods are able to correct cupping artifacts and reduce reconstruction error. The SPR method does not increase tissue contrast or noise while the NSR method increases both.
Keywords: Cone beam CT, scatter correction, breast imaging
DOI: 10.3233/XST-2010-0280
Journal: Journal of X-Ray Science and Technology, vol. 19, no. 1, pp. 91-109, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl