Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Recent Development of X-Ray CT and Micro CT
Article type: Research Article
Authors: Obenaus, André | Smith, Anna
Affiliations: Radiobiology Program, Loma Linda University, Chan Shun Pavilion, Room A1010, 11175 Campus Street, Loma Linda, CA 92354, USA
Note: [] Corresponding author: André Obenaus, PhD, Radiobiology Program, Loma Linda University, Chan Shun Pavilion, Room A1010, 11175 Campus Street, Loma Linda, CA, 92354 USA. Tel.: +1 909 558 7108; Fax: +1 909 558 0320; E-mail: aobenaus@dominion.llumc.edu
Abstract: The use of non-invasive imaging modalities, including micro X-ray computed tomography (micro-CT), is starting to be used extensively to investigate normal and pathological states in a variety of animal models. This increased use of in vivo imaging requires a better understanding of the radiation dose delivered during routine imaging. Our laboratory is equipped with a micro X-ray computer tomography unit (MicroCAT II®, ImTek Inc., Knoxville, TN) with a 60 kVp X-ray source and a reconstruction volume resolution as low as 15 microns that is used for proton radiation therapy treatment planning. In order to determine the X-ray radiation dose delivered to skin and internal organs by our micro-CT we implanted new, calibrated Harshaw TLD-100 Lithium Fluoride thermo-luminescent detectors (TLDs), into five C57BL/6 male mice and ten Sprague-Dawley male rats. Implants were made into the brain, heart, right lung, liver, stomach, cecum, bladder, dorsal thoracal skin and ventral abdominal skin in each animal. Animals were each scanned once using 50 kVp at 800 μA with 360 projections per scan with each projection lasting 400 msec. Using the TLD readings, the radiation dose from each body location was measured with the dorsal thoracal skin receiving the highest average dose (4.5 cGy, mouse; 2.8 cGy, rat) and other internal organs receiving significantly lower average doses. Therefore, knowing the radiation doses delivered during routine imaging, care can be taken to avoid significant and potentially lethal doses of radiation.
Journal: Journal of X-Ray Science and Technology, vol. 12, no. 4, pp. 241-249, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl