Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lindgren, Niklas | Francardo, Veronica | Quintino, Luis | Lundberg, Cecilia | Cenci, M. Angela
Affiliations: Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden | CNS Genetherapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
Note: [] Correspondence to: M. Angela Cenci, Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, BMC F-11, S- 221 84 Lund, Sweden. Tel.: +46 46 2224446; Fax: +46 46 2224546; E-mail: Angela.Cenci_Nilsson@med.lu.se
Abstract: Background: Glial cell line-derived neurotrophic factor (GDNF) is the most promising neurotrophin for restorative treatments in Parkinson's disease, but its biological effects are not completely understood. Objective: To define a model of GDNF gene therapy in the mouse, we studied the long-term effects of lentiviral GDNF delivery in mice with striatal 6-hydroxydopamine (6-OHDA) lesions. Methods: Lentiviral vectors coding for GDNF or green fluorescent protein (GFP) were injected unilaterally in the striatum two weeks prior to the 6-OHDA lesion. Mice were monitored on tests of spontaneous activity and amphetamine-induced rotation at 1, 4, 10 and 35 weeks post-lesion. Brains were processed immunohistochemically for tyrosine hydroxylase (TH) and markers of extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation at the same time points. Results: Lentiviral GDNF significantly inhibited both spontaneous and amphetamine-induced rotation. Compared to the control vector, lentiviral GDNF resulted in a partial protection of TH-positive cells in the substantia nigra, and in a nearly total restoration of striatal TH immunostaining by 35 weeks. A progressive sprouting of TH-positive neurites occurred in both the globus pallidus and the substantia nigra, reaching a 4-5 fold increase above controls by 35 weeks. This effect was paralleled by a long-term supranormal activation of ERK1/2 and its downstream target, phospho-Ser31 TH. Conclusions: Lentiviral GDNF delivery produced robust long-term signaling responses and neurorestoration. This experimental model of GDNF gene therapy will be particularly suitable to study the molecular mechanisms of dopaminergic fiber sprouting, a long-term response to GDNF delivery that also occurs in Parkinson's disease patients.
Keywords: Neurotoxin, neuroprotection, rodent, mitogen-activated protein kinases, MAPK, trophic factor, GDNF
DOI: 10.3233/JPD-012146
Journal: Journal of Parkinson's Disease, vol. 2, no. 4, pp. 333-348, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl