Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Li, Yanji* | Ni, Meng | He, Qiang | Li, Xiang | Zhang, Wei | Wang, Huihui
Affiliations: College of Energy and Environment, Shenyang Aerospace University, Key Laboratory of Clean Energy, Liaoning, Shenyang, China
Correspondence: [*] Corresponding author: Yanji Li, College of Energy and Environment, Shenyang Aerospace University, Key Laboratory of Clean Energy, Liaoning, Shenyang 110136, China. E-mail: yanji0518@163.com
Abstract: Graphene and chitosan acted as the adsorbents for simulated wastewater with rhodamine B. The novel material produced by freeze-drying obviously outperformed graphene and chitosan in treating rhodamine B. Factors (e.g., contaminant concentration, reaction time, solution pH value, adsorption dose and temperature) overall impacted the adsorption. The optimal conditions for graphene-chitosan treatment of dyes included the concentration of pollutants at 400 mg/L, the dose of adsorbent as 5 mg, the solution pH at 4 and at 25∘C, and for 12 h, in which the maximal treatment amount reached 858.00 mg/g. The adsorption processes of Chitosan/graphene composites and magnetic Chitosan/graphene composites for simulated wastewater from Rhodamine B reactor followed Langmuir and Freundlich models, respectively. The in-particle diffusion model shows that the adsorption process of the composites for Rhodamine B simulated wastewater is not determined by either surface diffusion or in-particle diffusion. The magnetic Chitosan/graphene composites exhibit high recyclability, which can be respectively reused 3 times and 5 times and retain 80% adsorption capacity after being administrated with Rhodamine B simulated wastewater. By analyzing grey correlation degree, it is demonstrated that the concentration of pollutants and the reaction temperature critically affect the adsorption capacity. The electrochemical treatment with graphite rod for the Cr3+ was under the initial voltage of 30.6 V, at the pH of 5.59, and at the temperature of 18.5∘C; the removal rate of the samples was nearly 62.35% with the chromium ion concentration declined from 0.3333 g/L to 0.1255 g/L.
Keywords: Absorption, Rhodamine B dye, Cr3+ ion, graphene, chitosan composite
DOI: 10.3233/JCM-204556
Journal: Journal of Computational Methods in Sciences and Engineering, vol. 21, no. 4, pp. 927-938, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl