Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: III Congress of Theoretical and Computational Physical Chemistry, 2–4 December 2010, Altos de Pipe, Caracas, Venezuela
Guest editors: Humberto Soscunxy, Fernando Ruettez and Anibal Sierraltaz
Article type: Research Article
Authors: Tosta, Maria M.a | Mora, Jose R.a | Cordova, Taniab | Chuchani, Gabriela; *
Affiliations: [a] Centro de Química, Instituto Venezolano de Investigaciones Científicas (I.V.I.C.), Caracas, Venezuela | [b] Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA | [x] Centro Tecnológico, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela | [y] Departamento de Química, Facultad Experimental de Ciencias, La Universidad del Zulia LUZ, Maracaibo, Venezuela | [z] Centro de Química, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela
Correspondence: [*] Corresponding author: Gabriel Chuchani, Centro de Química, Instituto Venezolano de Investigaciones Científicas (I.V.I.C.), Apartado 21827, Caracas, Venezuela. E-mail: chuchani@ivic.gob.ve.
Abstract: The gas-phase elimination kinetic of 4-bromobutyric acid to give butyrolactone, and hydrogen bromide was studied using Density Functional Theory (DFT) and Moller-Plesset Perturbation Theory of Second Order (MP2) to investigate the more reasonable reaction mechanism. Good agreement of calculated activation parameters with the experimental values was obtained when using PBEPBE/6-31++G(d,p) level of theory. Analysis of the calculated thermodynamic and kinetic parameters suggested the reaction mechanism is unimolecular, with involvement of the hydroxyl oxygen of the carboxylic moiety of the substrate assisting the exit of bromide in nucleophilic substitution. The alternate mechanism with the participation of the carbonyl oxygen in a slow step to give an intimate ion-pair intermediate was disregarded due to the high energy of activation. Bond order analysis shows the process is dominated by the breaking of the C-Br bond. The reaction can be described as unimolecular and moderately non-synchronous process.
Keywords: 4-bromobutyric acid, density functional theory, elimination kinetic, mechanism
DOI: 10.3233/JCM-2012-0411
Journal: Journal of Computational Methods in Sciences and Engineering, vol. 12, no. 4-6, pp. 237-245, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl