Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Cergolj, Vincenta; b; * | Stankoski, Simona | Pirc, Matijab | Luštrek, Mitjaa
Affiliations: [a] Department of Intelligent Systems, Jožef Stefan Institute, Ljubljana, Slovenia | [b] Faculty of Electrical Engineering, University of Ljubljana, Slovenia
Correspondence: [*] Corresponding author. E-mail: vc2756@student.uni-lj.si.
Abstract: Adequate hydration is important for one’s health, but many people do not consume sufficient fluids. By constantly monitoring fluid intake, we gain information that can be extremely useful in dealing with unhealthy drinking habits. This paper deals with the problem of developing a machine learning method for drinking detection, intended for use on an edge device, with a specific focus on power consumption. The proposed approach is based on data from inertial sensors built into a practical, non-invasive wrist-worn device that monitors wrist movement throughout the day and automatically detects drinking events. It ensures low energy consumption by triggering the machine learning only when the probability of drinking is high, as well as by other energy saving measures. To develop and validate our methods, we collected data from 19 participants, which resulted in 135 hours of data, of which 2 hours and 30 minutes correspond to drinking activities. The algorithm was thoroughly assessed through both offline testing and by running the algorithm directly on the wristband in real life. During the offline evaluation, we obtained a precision of 94.5 %, a recall of 84.9 %, and an F1 score of 89.4 %. Testing in real life demonstrated a precision of 74.5 % and a recall of 89.9 %. Additionally, the energy efficiency analysis showed that our proposed technique for triggering the drinking detection method reduced the battery power consumption during the periods of inactivity by a factor of 5.8 compared to continuously monitoring for drinking events.
Keywords: Activity recognition, drinking detection, machine learning, microcontroller, inertial sensors
DOI: 10.3233/AIS-230524
Journal: Journal of Ambient Intelligence and Smart Environments, vol. Pre-press, no. Pre-press, pp. 1-20, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl