Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Translational Research and Drug Discovery for Neurodegeneration: Challenges for Latin America
Guest editors: K.S. Jagannatha Rao, Gabrielle B. Britton, Luisa Lilia Rocha Arrieta, Norberto Garcia-Cairasco, Alberto Lazarowski, Adrián Palacios, Antoni Camins Espuny and Ricardo B. Maccioni
Article type: Research Article
Authors: Martínez-García, Ignacio | Hernández-Soto, Rebeca | Villasana-Salazar, Benjamín | Ordaz, Benito | Peña-Ortega, Fernando; *
Affiliations: Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
Correspondence: [*] Correspondence to: Fernando Peña-Ortega, PhD. Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, QRO, 76230, México. Email: jfpena@unam.mx.
Abstract: Background:Deficits in odor detection and discrimination are premature symptoms of Alzheimer’s disease (AD) that correlate with pathological signs in the olfactory bulb (OB) and piriform cortex (PCx). Similar olfactory dysfunction has been characterized in AD transgenic mice that overproduce amyloid-β peptide (Aβ), which can be prevented by reducing Aβ levels by immunological and pharmacological means, suggesting that olfactory dysfunction depends on Aβ accumulation and Aβ-driven alterations in the OB and/or PCx, as well as on their activation. However, this possibility needs further exploration. Objective:To characterize the effects of Aβ on OB and PCx excitability/coupling and on olfaction. Methods:Aβ oligomerized solution (containing oligomers, monomers, and protofibrils) or its vehicle were intracerebroventricularlly injected two weeks before OB and PCx excitability and synchrony were evaluated through field recordings in vivo and in brain slices. Synaptic transmission from the OB to the PCx was also evaluated in slices. Olfaction was assessed through the habituation/dishabituation test. Results:Aβ did not affect lateral olfactory tract transmission into the PCx but reduced odor habituation and cross-habituation. This olfactory dysfunction was related to a reduction of PCx and OB network activity power in vivo. Moreover, the coherence between PCx-OB activities was also reduced by Aβ. Finally, Aβ treatment exacerbated the 4-aminopyridine-induced excitation in the PCx in slices. Conclusion:Our results show that Aβ-induced olfactory dysfunction involves a complex set of pathological changes at different levels of the olfactory pathway including alterations in PCx excitability and its coupling with the OB. These pathological changes might contribute to hyposmia in AD.
Keywords: Alzheimer’s disease, coherence, hyperexcitability, local field potential, main olfactory bulb, olfactory function, piriform cortex
DOI: 10.3233/JAD-201392
Journal: Journal of Alzheimer's Disease, vol. 82, no. s1, pp. S19-S35, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl