Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Alzheimer’s Disease: New Beginnings
Guest editors: G. Perry, J. Avila, P.I. Moreira, A.A. Sorensen and M. Tabaton
Article type: Review Article
Authors: Stockburger, Carolaa | Eckert, Schamima | Eckert, Gunter P.c | Friedland, Kristinab | Müller, Walter E.a; *
Affiliations: [a] Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany | [b] Department of Molecular and Clinical Pharmacy, University of Erlangen, Erlangen, Germany | [c] Department of Nutritional Sciences, University of Giessen, Giessen, Germany
Correspondence: [*] Correspondence to: University-Prof. Dr. Walter E. Müller, Department of Pharmacology, Biocenter Goethe-University, 60438 Frankfurt, Germany. E-mail: w.e.mueller@em.uni-frankfurt.de.
Abstract: Because of the failure of all amyloid-β directed treatment strategies for Alzheimer’s disease (AD), the concept of mitochondrial dysfunction as a major pathomechanism of the cognitive decline in aging and AD has received substantial support. Accordingly, improving mitochondrial function as an alternative strategy for new drug development became of increasing interest and many different compounds have been identified which improve mitochondrial function in preclinical in vitro and in vivo experiments. However, very few if any have been investigated in clinical trials, representing a major drawback of the mitochondria directed drug development. To overcome these problems, we used a top-down approach by investigating several older antidementia drugs with clinical evidence of therapeutic efficacy. These include EGb761® (standardized ginkgo biloba extract), piracetam, and Dimebon. All improve experimentally many aspects of mitochondrial dysfunction including mitochondrial dynamics and also improve cognition and impaired neuronal plasticity, the functionally most relevant consequences of mitochondrial dysfunction. All partially inhibit opening events of the mitochondrial permeability transition pore (mPTP) which previously has mainly been discussed as a mechanism relevant for the induction of apoptosis. However, as more recent work suggests the mPTP as a master regulator of many mitochondrial functions, our data suggest the mPTP as a possible relevant drug target within the love triangle between mPTP regulation, mitochondrial dynamics, and mitochondrial function including regulation of neuronal plasticity. Drugs interfering with mPTP function will improve not only mitochondrial impairment in aging and AD but also will have beneficial effects on impaired neuronal plasticity, the pathomechanism which correlates best with functional deficits (cognition, behavior) in aging and AD.
Keywords: Antidementia drugs, inhibition of mitochondrial permeability transition pore function, mitochondrial dysfunction, therapeutic efficacy
DOI: 10.3233/JAD-179915
Journal: Journal of Alzheimer's Disease, vol. 64, no. s1, pp. S455-S467, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl