You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

Preferred Features of a Fluorine-19 MRI Probe for Amyloid Detection in the Brain

Abstract

Fluorine-19 magnetic resonance imaging (19F MRI) could be a promising approach for imaging amyloid deposition in the brain. However, the required features of a 19F MRI probe for amyloid detection remain unclear. In the present study, we investigated a series of compounds as potent 19F probes that could prevent the reduction in MR signal when bound to amyloid plaques in the brain. Each compound consists of styrylbenzoxazole as a core structure linked by a different length of polyethylene glycol (PEG) chain to one of three types of fluorine-labeled group: a trifluoroethoxy group, a hexafluoroisopropoxy group, or a 3′,5′-bis(trifluoromethyl)benzylamino group. Among these compounds, 6-(3′,6′,9′,15′,18′,21′-heptaoxa-23′,23′,23′-trifluoro tricosanyloxy)-2-(4′-dimethylaminostyryl)benzoxazole [compound 3b (m = 6)], which has a trifluoroethoxy group with seven ethylene glycol groups in the PEG chain, showed significant 19F MR signals in the brains of AβPPswe/PS1dE9 double-transgenic mice, but not wild-type mice. This suggested that compound 3b (m = 6) could be a useful 19F MRI probe for amyloid detection. Furthermore, this study identified the most effective length of PEG chain between the fluorine-labeled group and the core structure to ensure a strong MR signal when the probe is bound to amyloid plaques.