Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Review Article
Authors: Parihar, Mordhwaj S.a | Brewer, Gregory J.b; *
Affiliations: [a] School of Studies in Biotechnology & Zoology, Vikram University, Ujjain, MP, India | [b] Kenneth Stark Endowed Chair in Alzheimer Research, Departments of Neurology and Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
Correspondence: [*] Correspondence to: Professor Gregory J. Brewer. Tel.: +1 217 545 5230; Fax: +1 217 545 3227; E-mail: gbrewer@siumed.edu.
Abstract: Alzheimer's disease is associated with synapse loss, memory dysfunction, and pathological accumulation of amyloid-β (Aβ) in plaques. However, an exclusively pathological role for Aβ is being challenged by new evidence for an essential function of Aβ at the synapse. Aβ protein exists in different assembly states in the central nervous system and plays distinct roles ranging from synapse and memory formation to memory loss and neuronal cell death. Aβ is present in the brain of symptom-free people where it likely performs important physiological roles. New evidence indicates that synaptic activity directly evokes the release of Aβ at the synapse. At physiological levels, Aβ is a normal, soluble product of neuronal metabolism that regulates synaptic function beginning early in life. Monomeric Aβ40 and Aβ42 are the predominant forms required for synaptic plasticity and neuronal survival. With age, some assemblies of Aβ are associated with synaptic failure and Alzheimer's disease pathology, possibly targeting the N-methyl-D-aspartic acid receptor through the nicotinic acetylcholine receptor, mitochondrial Aβ alcohol dehydrogenase, and cyclophilin D. But emerging data suggests a distinction between age effects on the target response in contrast to the assembly state or the accumulation of the peptide. Both aging and Aβ independently decrease neuronal plasticity. Our laboratory has reported that Aβ, glutamate, and lactic acid are each increasingly toxic with neuron age. The basis of the age-related toxicity partly resides in age-related mitochondrial dysfunction and an oxidative shift in mitochondrial and cytoplasmic redox potential. In turn, signaling through phosphorylated extracellular signal-regulated protein kinases is affected along with an age-independent increase in phosphorylated cAMP response element-binding protein. This review examines the long-awaited functional impact of Aβ on synaptic plasticity.
Keywords: Aging, Alzheimer's disease, mitochondria, survival signaling, synapse
DOI: 10.3233/JAD-2010-101020
Journal: Journal of Alzheimer's Disease, vol. 22, no. 3, pp. 741-763, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl