Texture classification with modified rotation invariant local binary pattern and gradient boosting
Article type: Research Article
Authors: S. Sathiya, Devi
Affiliations: Department of Computer Science and Engineering, UCE, BIT Campus,Anna University, Trichy, Tamilnadu, India E-mail: Sathyadevibalasundaram2020@gmail.com
Correspondence: [*] Corresponding author: Department of Computer Science and Engineering, UCE, BIT Campus, Anna University, Trichy, Tamilnadu, India. E-mail: Sathyadevibalasundaram2020@gmail.com.
Abstract: Since texture is prominent low level feature of an image, most of the image processing and computer vision applications rely on this feature for efficient extraction, retrieval, visualization and classification of the images. Hence, the texture analysis method mainly concentrates on efficient feature extraction and representation of the image. The images captured and analyzed in many of the applications are not in same (or) similar scale, orientation and illumination and also texture has regular, stochastic, periodic, homogeneous (or) inhomogeneous and directional in nature. To address these issues, recent texture analysis method focused on efficient and invariant feature extraction and representation with reduced dimension. Hence this paper proposes a invariant texture descriptor, Locality preserving Rotation Invariant Modified Directional Local Binary Pattern (LRIMDLBP) based on LBP. The classical LBP descriptor is widely used in most of the texture analysis applications due to its simplicity and robustness to illumination changes. However, it does not efficiently capture the discriminative texture information because it uses sign information and ignores the magnitude value of the neighborhood and also suffers from high dimensionality. Hence to improve the performance of LBP, many variants are proposed. Though most of these LBP variants are either geometrical or direction invariant, fails to address the spatial locality and contrast invariance. To address these issues, the proposed LRIMDLBP incorporates spatial locality, contrast and direction information for rotation invariant texture descriptor with reduced dimension. The proposed LRIMDLBP consists of 5 phases: (i) Reference point identification, (ii) Magnitude calculation, (iii) Binary Label computation based on threshold, (iv) Pattern identification in dominant direction and (v) LRIMDLBP code computation. The locality and rotation invariance is achieved by identifying and using reference point in a local neighborhood. The reference point is a dominant pixel whose magnitude is large in the neighborhood excluding center pixel. The spatial locality and rotation invariance is achieved by preserving the weights of LBP dynamically based on the reference point. The proposed method also preserves the direction information of the texture by comparing the magnitude of the pixel in the four dominant directions such as horizontal, vertical, diagonal and anti-diagonal directions. Finally the proposed invariant LRIMDLBP descriptor computes histogram based on decimal pattern value. The proposed LRIMDLBP descriptor results in texture feature with reduced dimension when compared to other LBP variants. The performance of the proposed descriptor is evaluated with large and well known four bench mark texture datasets namely (i) CUReT, (ii) Outex, (iii) KTS-TIPS and (iv) UIUC against three classifiers such as (i). K-Nearest Neighbor (K-NN), (ii). Support Vector Machine (SVM) with Radial Basis Function (RBF) and (iii). Gradient Boosting Classifier (GBC). The intensive experimental result shows that the ensemble based GBC yields superior classification accuracy of 99.38%, 99.43%, 98.67% and 98.82% for the datasets CUReT, Outex, KTH-TIPS and UIUC respectively when compared with other two classifiers and also improves the generalization ability. The proposed LRIMDLBP descriptor achieves approximately 15% more classification accuracy when compared with traditional LBP and also produces 1% to 2.5% more classification accuracy compared with other state of the art LBP variants.
Keywords: Contrast, dominant direction, ensemble learning, gradient boosting, LBP, Locality, rotation invariant, texture descriptor
DOI: 10.3233/KES220012
Journal: International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 26, no. 2, pp. 125-136, 2022