Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Selvaraj, Poovarasan* | Chandra, E.
Affiliations: Department of Computer Science Bharathiar University Coimbatore, India
Correspondence: [*] Corresponding author: Poovarasan Selvaraj, Department of Computer Science Bharathiar University Coimbatore, India. E-mail: poovarasan.cs@buc.edu.in.
Abstract: In Speech Enhancement (SE) techniques, the major challenging task is to suppress non-stationary noises including white noise in real-time application scenarios. Many techniques have been developed for enhancing the vocal signals; however, those were not effective for suppressing non-stationary noises very well. Also, those have high time and resource consumption. As a result, Sliding Window Empirical Mode Decomposition and Hurst (SWEMDH)-based SE method where the speech signal was decomposed into Intrinsic Mode Functions (IMFs) based on the sliding window and the noise factor in each IMF was chosen based on the Hurst exponent data. Also, the least corrupted IMFs were utilized to restore the vocal signal. However, this technique was not suitable for white noise scenarios. Therefore in this paper, a Variant of Variational Mode Decomposition (VVMD) with SWEMDH technique is proposed to reduce the complexity in real-time applications. The key objective of this proposed SWEMD-VVMDH technique is to decide the IMFs based on Hurst exponent and then apply the VVMD technique to suppress both low- and high-frequency noisy factors from the vocal signals. Originally, the noisy vocal signal is decomposed into many IMFs using SWEMDH technique. Then, Hurst exponent is computed to decide the IMFs with low-frequency noisy factors and Narrow-Band Components (NBC) is computed to decide the IMFs with high-frequency noisy factors. Moreover, VVMD is applied on the addition of all chosen IMF to remove both low- and high-frequency noisy factors. Thus, the speech signal quality is improved under non-stationary noises including additive white Gaussian noise. Finally, the experimental outcomes demonstrate the significant speech signal improvement under both non-stationary and white noise surroundings.
Keywords: Speech enhancement, non-stationary noises, additive white gaussian noise, intrinsic mode functions, SWEMDH technique, variational mode decomposition, narrow-band components
DOI: 10.3233/KES-210072
Journal: International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 25, no. 3, pp. 299-308, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl