Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Pramod Reddy, A.* | V, Vijayarajan
Affiliations: School of Computer Science and Engineering, VIT University, Vellore, India
Correspondence: [*] Corresponding author: A. Pramod Reddy, School of Computer Science and Engineering, VIT University, Vellore, India. E-mail: pramodaeluri@gmail.com.
Abstract: For emotion recognition, here the features extracted from prevalent speech samples of Berlin emotional database are pitch, intensity, log energy, formant, mel-frequency ceptral coefficients (MFCC) as base features and power spectral density as an added function of frequency. In these work seven emotions namely anger, neutral, happy, Boredom, disgust, fear and sadness are considered in our study. Temporal and Spectral features are considered for building AER(Automatic Emotion Recognition) model. The extracted features are analyzed using Support Vector Machine (SVM) and with multilayer perceptron (MLP) a class of feed-forward ANN classifiers is/are used to classify different emotional states. We observed 91% accuracy for Angry and Boredom emotional classes by using SVM and more than 96% accuracy using ANN and with an overall accuracy of 87.17% using SVM, 94% for ANN.
Keywords: Multilayer perceptron, ANN, Support Vector Machine
DOI: 10.3233/KES-200044
Journal: International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 24, no. 3, pp. 227-233, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl