Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kotsiantis, S.a; * | Tzelepis, D.a | Koumanakos, E.b | Tampakas, V.a
Affiliations: [a] Department of Accounting, Technological Educational Institute of Patras, Greece | [b] National Bank of Greece, Credit Division, Greece
Correspondence: [*] Corresponding author. E-mail: sotos@math.upatras.gr
Abstract: The problem of imbalanced data sets occurs anytime one class represents a circumscribed concept, while the other represents the counterpart of that concept. The imbalanced data set problem can thus take two distinct forms: either the counterpart class is under-sampled relative to the concept class or it is over-sampled but particularly sparse. In bankruptcy prediction, classifiers are faced with imbalanced datasets: a lot of healthy firms and a smaller number of bankrupt firms. This paper firstly provides a systematic study on the various methodologies that have tried to handle the problem of imbalanced datasets. It presents an experimental study of these methodologies with a proposed technique and it concludes that such a framework can be a more effective solution to the bankruptcy prediction. Our method seems to allow improved identification of difficult small class (bankrupt firms) in predictive analysis, while keeping the classification ability of the other class (healthy firms) in an acceptable level.
Keywords: Supervised machine learning, imbalanced datasets
DOI: 10.3233/KES-2007-11204
Journal: International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 11, no. 2, pp. 115-127, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl