Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kopčo, Norbert | Carpenter, Gail A.
Affiliations: Department of Cognitive and Neural Systems, Boston University, Boston, Massachusetts USA. kopco@cns.bu.edu, gail@cns.bu.edu
Abstract: A memory-based learning system called PointMap is a simple and computationally efficient extension of Condensed Nearest Neighbor that allows the user to limit the number of exemplars stored during incremental learning. PointMap evaluates the information value of coding nodes during training, and uses this index to prune uninformative nodes either on-line or after training. These pruning methods allow the user to control both a priori code size and sensitivity to detail in the training data, as well as to determine the code size necessary for accurate performance on a given data set. Coding and pruning computations are local in space, with only the nearest coded neighbor available for comparison with the input; and in time, with only the current input available during coding. Pruning helps solve common problems of traditional memory-based learning systems: large memory requirements, their accompanying slow on-line computations, and sensitivity to noise. PointMap copes with the curse of dimensionality by considering multiple nearest neighbors during testing without increasing the complexity of the training process or the stored code. The performance of PointMap is compared to that of a group of sixteen nearest-neighbor systems on benchmark problems.
Keywords: memory-based learning, nearest neighbor, on-line pruning, post-training pruning, incremental learning
DOI: 10.3233/HIS-2004-11-208
Journal: International Journal of Hybrid Intelligent Systems, vol. 1, no. 1-2, pp. 57-71, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl