Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: High-Performance Computing
Guest editors: Achyut Shankar
Article type: Research Article
Authors: Wang, Honglv1; * | Shi, Dingke | Zhang, Chengting | Ding, Nanzhe1 | Cheng, Chao
Affiliations: China Tobacco Zhejiang Industrial CO. LTD., Hangzhou, Zhejiang, China
Correspondence: [*] Corresponding author: Honglv Wang, China Tobacco Zhejiang Industrial CO. LTD., Hangzhou 315504, Zhejiang, China. E-mail: zjf83882056@163.com.
Note: [1] These two authors contributed equally to this work and should be regarded as co-corresponding authors.
Abstract: Industry 4.0 is reshaping conventional factories into “smart factories” via the widespread use of IoT-enabled networks of linked devices, sensors, and software for process optimization and monitoring. Intelligent manufacturing facilities may employ IoT-based predictive maintenance to reduce downtime, increase equipment longevity, and avoid machine problems. Manufacturers may get real-time insights into energy consumption patterns, which is a major concern in the business. The primary objective is to optimize energy use during part manufacturing. Hence, this paper proposes the Internet of Things- Low-Power Wide-Area Network Model (IoT-LPWM) to monitor manufacturing and reduce energy consumption. The proposed method’s production status component uses visual Knowledge Map Analysis loaded with data from the edge device. A Low-power wide-area network (LPWAN) is the fundamental component of the suggested approach to industrial wireless communication. Using edge computing technology in LPWAN helps reduce computational complexity by shifting high-intensity processing to the periphery, where devices with computing resources are more readily available. Both the energy needed to process and store massive data and the likelihood of cyberattacks may be decreased with this method. The experimental results show that the IoT-LPWM provides useful information to help them make decisions and reduce energy consumption. The experimental results show that our proposed method IoT-LPWM achieves a high performance ratio of 97%, attack prevention ratio of 96.3%, energy management ratio of 93.8%, and data transmission ratio of 98.1% compared to other methods.
Keywords: Intelligent factory, internet of things (IoT), knowledge map (KM), edge computing(EC), sensors
DOI: 10.3233/IDT-240251
Journal: Intelligent Decision Technologies, vol. 18, no. 4, pp. 3437-3451, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl