Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Middha, Karuna* | Mittal, Apeksha
Affiliations: School of Engineering and Science, GD Goenka University, Gurugram, Haryana, India
Correspondence: [*] Corresponding author: Karuna Middha, School of Engineering and Science, GD Goenka University, Gurugram, Haryana, India. E-mail: karuna114@gmail.com.
Abstract: Type 2 diabetes mellitus (T2DM) detection is a chronic disease, which is caused due to the insulin disorder. Moreover, the decreased secretion of insulin increased the blood glucose level, thereby the human body cannot respond with the high glucose level. The T2DM sufferers do not produce enough insulin, or it resists insulin. The symptoms of T2DM disease are increased hunger, thirst, fatigue, frequent urination and blurred vision, and in some cases, there are no symptoms. The commonly utilized treatments of T2DM are exercise, diet, insulin therapy and medication. In this paper, the Competitive Multi-Verse Rider Optimizer (CMVRO)-based hybrid deep learning scheme is devised for T2DM detection. The hybrid deep learning involves two classifiers, such as Rider based Neural Network (RideNN) and Deep Residual Network (DRN). Moreover, the comparative analysis of T2DM detection is done by comparing various feature selection approaches, such as Tanimoto similarity, Chi square (Chi-2), Fisher Score (FS), Linear Discriminant Analysis (LDA), Random Forest (RF), and Support Vector Machine recursive feature elimination (SVM-RFE) for T2DM detection. Amongst these, the tanimoto similarity feature selection approach attained the better performance with respect to the testing accuracy, sensitivity and specificity of 0.932, 0.932 and 0.914, correspondingly.
Keywords: Tanimoto similarity, Chi square, Fisher Score, linear discriminant analysis, random forest
DOI: 10.3233/IDT-220077
Journal: Intelligent Decision Technologies, vol. 17, no. 3, pp. 595-606, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl