Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: V, Sethurama; * | Prasad, Andea | Rajeswara Rao, R.b
Affiliations: [a] Vikrama Simhapuri University, Kakuur Nellore, Andhra Pradesh, India | [b] JNTU, Vizayanagaram, Andhra Pradesh, India
Correspondence: [*] Corresponding author: Sethuram V, Vikrama Simhapuri University, Kakuur Nellore, Andhra Pradesh, India. E-mail: leosign.vsr86@gmail.com.
Abstract: In speech technology, a pivotal role is being played by the Speaker diarization mechanism. In general, speaker diarization is the mechanism of partitioning the input audio stream into homogeneous segments based on the identity of the speakers. The automatic transcription readability can be improved with the speaker diarization as it is good in recognizing the audio stream into the speaker turn and often provides the true speaker identity. In this research work, a novel speaker diarization approach is introduced under three major phases: Feature Extraction, Speech Activity Detection (SAD), and Speaker Segmentation and Clustering process. Initially, from the input audio stream (Telugu language) collected, the Mel Frequency Cepstral coefficient (MFCC) based features are extracted. Subsequently, in Speech Activity Detection (SAD), the music and silence signals are removed. Then, the acquired speech signals are segmented for each individual speaker. Finally, the segmented signals are subjected to the speaker clustering process, where the Optimized Convolutional Neural Network (CNN) is used. To make the clustering more appropriate, the weight and activation function of CNN are fine-tuned by a new Self Adaptive Sea Lion Algorithm (SA-SLnO). Finally, a comparative analysis is made to exhibit the superiority of the proposed speaker diarization work. Accordingly, the accuracy of the proposed method is 0.8073, which is 5.255, 2.45%, and 0.075, superior to the existing works.
Keywords: Speaker diarization, segmentation, clustering, Telugu language, MFCC, optimization, CNN
DOI: 10.3233/IDT-211005
Journal: Intelligent Decision Technologies, vol. 15, no. 4, pp. 561-577, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl