Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special issue on Intelligent Biomedical Data Analysis and Processing
Guest editors: Deepak Gupta, Oscar Castillo and Ashish Khanna
Article type: Research Article
Authors: Susymary, J.a; * | Deepalakshmi, P.b
Affiliations: [a] Department of Computer Applications, Kalasalingam Academy of Research and Education, Tamil Nadu, India | [b] Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education, Tamil Nadu, India
Correspondence: [*] Corresponding author: J. Susymary, Department of Computer Applications, Kalasalingam Academy of Research and Education, Tamil Nadu, India. E-mail: susymaryj@gmail.com.
Abstract: Precision Medicine has emerged as a preventive, diagnostic and treatment tool to approach human diseases in a personalized manner. Since precision medicine incorporates omics data and knowledge in personal health records, people who live in industrially polluted areas have an advantage in the medicinal field. Integration of non-omics data and related biological knowledge in term omics data is a reality. The heterogenic characteristics of non-omics data and high dimensional omics data makes the integration challengeable. Hard data analytics problems create better opportunities in analytics. This review cut across the boundaries of machine learning models for the eventual development of a successful precision medicine forecast model, different strategies for the integration of non-omics data and omics data, limitations and challenges in data integration, and future directions for the precision medicine forecasts. The literature also discusses non-omics data, diseases associated with air pollutants, and omics data. This information gives insight to the integrated data analytics and their application in future project implications. It intends to motivate researchers and precision medicine forecast model developers in a global integrative analytical approach.
Keywords: Precision medicine, epidemiological studies, air pollution exposure, health impacts, machine learning, non-omics data, omics data, data integration
DOI: 10.3233/IDT-200044
Journal: Intelligent Decision Technologies, vol. 15, no. 1, pp. 69-85, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl