Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special issue on Intelligent Biomedical Data Analysis and Processing
Guest editors: Deepak Gupta, Oscar Castillo and Ashish Khanna
Article type: Research Article
Authors: Chaudhary, Poonam* | Agrawal, Rashmi
Affiliations: Manav Rachna International Institute of Research and Studies, Faridabad, India
Correspondence: [*] Corresponding author: Poonam Chaudhary, Manav Rachna International Institute of Research and Studies, Faridabad, India. E-mail: Poonam.potalia@gmail.com.
Abstract: The classification accuracy has become a significant challenge and an important task in sensory motor imagery (SMI) electroencephalogram (EEG) based Brain Computer interface (BCI) system. This paper compares ensemble classification framework with individual classifiers. The main objective is to reduce the inference of non-stationary and transient information and improves the classification decision in BCI system. The framework comprises the three phases as follows: (1) the EEG signal first decomposes into triadic frequency bands: low pass band, band pass filter and high pass filter to localize α, β and high γ frequency bands within the EEG signals, (2) Then, Common spatial pattern (CSP) algorithm has been applied on the extracted frequencies in phase I to heave out the important features of EEG signal, (3) Further, an existing Dynamic Weighted Majiority (DWM) ensemble classification algorithm has been implemented using features extracted in phase II, for final class label decision. J48, Naive Bayes, Support Vector Machine, and K-Nearest Neighbor classifiers used as base classifiers for making a diverse ensemble of classifiers. A comparative study between individual classifiers and ensemble framework has been included in the paper. Experimental evaluation and assessment of the performance of the proposed model is done on the publically available datasets: BCI Competition IV dataset IIa and BCI Competition III dataset IVa. The ensemble based learning method gave the highest accuracy among all. The average sensitivity, specificity, and accuracy of 85.4%, 86.5%, and 85.6% were achieved with a kappa value of 0.59 using DWM classification.
Keywords: Sensory motor imagery (SMI), electroencephalogram (EEG), pattern recognition system, triadic frequency bands, dynamic weighted majiority (DWM), J48, naive Bayes, support vector machine, k-nearest neighbor classifiers
DOI: 10.3233/IDT-200005
Journal: Intelligent Decision Technologies, vol. 15, no. 1, pp. 33-43, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl