Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Pereira, Luís Moniz; * | Ramli, Carroline Kencana
Affiliations: Centro de Inteligência Artificial (CENTRIA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Correspondence: [*] Corresponding author. E-mail: lmp@di.fct.unl.pt
Abstract: Humans know how to reason based on cause and effect, but cause and effect is not enough to draw conclusions due to the problem of imperfect information and uncertainty. To resolve these problems, humans reason combining causal models with probabilistic information. The theory that attempts to model both causality and probability is called probabilistic causation, better known as Causal Bayes Nets. In this work we henceforth adopt a logic programming framework and methodology to model our functional description of Causal Bayes Nets, building on its many strengths and advantages to derive a consistent definition of its semantics. ACORDA is a declarative prospective logic programming system which simulates human reasoning in multiple steps into the future. ACORDA itself is not equipped to deal with probabilistic theory. On the other hand, P-log is a declarative logic programming language that can be used to reason with probabilistic models. Integrated with P-log, ACORDA becomes ready to deal with uncertain problems that we face on a daily basis. We show how the integration between ACORDA and P-log has been accomplished, and we present cases of daily life examples that ACORDA can help people to reason about.
Keywords: P-log, ACORDA, prospective logic programming, human reasoning, causal models, bayes nets
DOI: 10.3233/IDT-2010-0074
Journal: Intelligent Decision Technologies, vol. 4, no. 2, pp. 133-148, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl