Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Yihong* | Szabo, Claudia | Sheng, Quan Z.
Affiliations: School of Computer Science, University of Adelaide, Adelaide, SA, Australia
Correspondence: [*] Corresponding author: Yihong Zhang, School of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia. Tel.: +61 8 83134487; E-mail:yihong.zhang@adelaide.edu.au
Abstract: Environmental sensing using multitudes of wirelessly connected sensors is becoming critical for resolving environmental problems, given recent technology advances in the Internet of Things (IoT). Current environmental sensing projects typically deploy commodity sensors, which are known to be unreliable and prone to produce noisy and erroneous data. Moreover, the majority of current sensor data cleaning techniques have not moved beyond using the mean or the median of spatially correlated readings, thus providing unsatisfying accuracies. In this paper, we propose a sensor reliability-based cleaning method, called Influence Mean (IM), which uses weighted aggregation based on individual sensor reliabilities. We investigate whether reducing or removing unreliable sensors can be more effective to provide accurate cleaning results, by designing and testing respective algorithms on synthetic and real datasets. The experimental results show that our method generally improves the data cleaning accuracy, particularly when the behaviors of unreliable sensors vary drastically from reliable sensors.
Keywords: Data cleaning, internet of things, environmental sensing
DOI: 10.3233/IDA-160853
Journal: Intelligent Data Analysis, vol. 20, no. 5, pp. 979-995, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl