Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Vesanto, Juha; 1
Affiliations: Laboratory of Computer and Information Science, Helsinki University of Technology, P. O. Box 5400, FIN-02015 HUT, Finland
Note: [1] E-mail: Juha.Vesanto@.hut.fi.
Abstract: The self-organizing map (SOM) is an efficient tool for visualization of multidimensional numerical data. In this paper, an overview and categorization of both old and new methods for the visualization of SOM is presented. The purpose is to give an idea of what kind of information can be acquired from different presentations and how the SOM can best be utilized in exploratory data visualization. Most of the presented methods can also be applied in the more general case of first making a vector quantization (e.g. k-means) and then a vector projection (e.g. Sammon's mapping).
Keywords: Self-organizing map, Data mining, Visualization, Vector quantization, Projection
DOI: 10.3233/IDA-1999-3203
Journal: Intelligent Data Analysis, vol. 3, no. 2, pp. 111-126, 1999
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl