Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Fu, Shuna | Wang, Lufenga | Yang, Jieb; *
Affiliations: [a] Chongqing Industry Polytechnic College, Chongqing, China | [b] Zunyi Normal University, Zunyi, Guizhou, China
Correspondence: [*] Corresponding author: Jie Yang, Zunyi Normal University, Zunyi, Guizhou 563100, China. E-mail: yj530966074@foxmail.com.
Abstract: Network data is ubiquitous, such as telecommunication, transport systems, online social networks, protein-protein interactions, etc. Since the huge scale and the complexity of network data, former machine learning system tried to understand network data arduously. On the other hand, thought of multi-granular cognitive computation simulates the problem-solving process of human brains. It simplifies the complex problems and solves problems from the easier to harder. Therefore, the application of multi-granularity problem-solving ideas or methods to deal with network data mining is increasingly adopted by researchers either intentionally or unintentionally. This paper looks into the domain of network representation learning (NRL). It systematically combs the research work in this field in recent years. In this paper, it is discovered that in dealing with the complexity of the network and pursuing the efficiency of computing resources, the multi-granularity solution becomes an excellent path that is hard to go around. Although there are several papers about survey of NRL, to our best knowledge, we are the first to survey the NRL from the perspective of multi-granular computing. This paper proposes the challenges that NRL meets. Furthermore, the feasibility of solving the challenges of NRL with multi-granular computing methodologies is analyzed and discussed. Some potential key scientific problems are sorted out and prospected in applying multi-granular computing for NRL research.
Keywords: Granular computing, network representation learning, network embedding, data mining
DOI: 10.3233/IDA-227328
Journal: Intelligent Data Analysis, vol. 28, no. 1, pp. 3-32, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl