Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liu, Yuea; * | Li, Bufangb
Affiliations: [a] Hebei University of Water Resources and Electric Engineering, Cangzhou, Hebei, China | [b] Cangzhou Municipal Human Resources and Social Security Bureau, Cangzhou, Hebei, China
Correspondence: [*] Corresponding author: Yue Liu, Hebei University of Water Resources and Electric Engineering, No. 1 Chongqing Road, Cangzhou, Hebei, China. E-mail: liuyue76@tju.edu.cn.
Abstract: Clustering algorithm is the foundation and important technology in data mining. In fact, in the real world, the data itself often has a hierarchical structure. Hierarchical clustering aims at constructing a cluster tree, which reveals the underlying modal structure of a complex density. Due to its inherent complexity, most existing hierarchical clustering algorithms are usually designed heuristically without an explicit objective function, which limits its utilization and analysis. K-means clustering, the well-known simple yet effective algorithm which can be expressed from the view of probability distribution, has inherent connection to Mixture of Gaussians (MoG). At this point, we consider combining Bayesian theory analysis with K-means algorithm. This motivates us to develop a hierarchical clustering based on K-means under the probability distribution framework, which is different from existing hierarchical K-means algorithms processing data in a single-pass manner along with heuristic strategies. For this goal, we propose an explicit objective function for hierarchical clustering, termed as Bayesian hierarchical K-means (BHK-means). In our method, a cascaded clustering tree is constructed, in which all layers interact with each other in the network-like manner. In this cluster tree, the clustering results of each layer are influenced by the parent and child nodes. Therefore, the clustering result of each layer is dynamically improved in accordance with the global hierarchical clustering objective function. The objective function is solved using the same algorithm as K-means, the Expectation-maximization algorithm. The experimental results on both synthetic data and benchmark datasets demonstrate the effectiveness of our algorithm over the existing related ones.
Keywords: K-means clustering, hierarchical clustering, Bayesian hierarchical probability
DOI: 10.3233/IDA-194807
Journal: Intelligent Data Analysis, vol. 24, no. 5, pp. 977-992, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl