Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chen, Chuanminga; b | Luo, Yonglonga; b; * | Yu, Qingyinga; b | Hu, Guiyina; b
Affiliations: [a] School of Computer and Information, Anhui Normal University, Wuhu, Anhui, China | [b] Anhui Provincial Key Laboratory of Network and Information Security, Wuhu, Anhui, China
Correspondence: [*] Corresponding author: Yonglong Luo, School of Computer and Information, Anhui Normal University, No. 189 Jiuhua South Road, Wuhu, Anhui 241003, China. Tel.: +86 553 5910645; E-mail: ylluo@ustc.edu.cn.
Abstract: The issue of privacy preservation is receiving more and more attention when publishing trajectory data. In this paper, we study the challenges of published trajectory data anonymization. Most existing anonymization methods directly delete the trajectories or locations violating specific constraints, it is likely to cause a large loss of information. To address the problem, this paper proposes a trajectory privacy preservation method based on 3D-Grid partition in order to reduce information loss in the process of trajectory anonymization. This method first divides the trajectory region into several spatio-temporal units (denoted as 3D-cells), and then conducts location exchange or suppression in each spatio-temporal unit. Based on the trajectory data partition, within each 3D-cell, the proposed method exchanges locations among trajectories or removes very few locations of some sub-trajectories which do not meet the conditions rather than the whole trajectory. Our method considers three scenarios of trajectory distribution and measures trajectory similarity based on time, orientation, spatial locations and other features of trajectory. After the reconstruction of the related anonymous sub-trajectories, an anonymized trajectory dataset is obtained. Theoretical analysis and experimental results show that, compared to other methods, the proposed algorithm effectively preserves trajectory data privacy and improves the anonymous results of trajectory data in terms of accuracy and availability.
Keywords: Privacy preservation, trajectory data partition, 3D-cell, trajectory similarity measurement, trajectory anonymization, trajectory reconstruction
DOI: 10.3233/IDA-183918
Journal: Intelligent Data Analysis, vol. 23, no. 3, pp. 503-533, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl