Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ventura-Molina, Elíasa | Alarcón-Paredes, Antoniob | Aldape-Pérez, Marioc | Yáñez-Márquez, Cornelioa | Adolfo Alonso, Gustavob; *
Affiliations: [a] Centro de Investigación en Computación, Instituto Politécnico Nacional. Av. Juan de Dios Bátiz, Esq. Miguel Othón de Mendizábal. Col. Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Ciudad de México, México | [b] Facultad de Ingeniería, Universidad Autónoma de Guerrero. Av. Lázaro Cárdenas s/n, Ciudad Universitaria Zona Sur, 39087. Chilpancingo Guerrero, México | [c] Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, México. Av. Juan de Dios Bátiz, Col. Nueva Industrial Vallejo, 07700, Ciudad de México, México
Correspondence: [*] Corresponding author: Gustavo Adolfo Alonso, Laboratory of Computing Technologies and Electronics, School of Engineering, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Ciudad Universitaria Zona Sur, Chilpancingo, Guerrero 39087, México. Tel.: +52 1 747 112 2838; E-mail: gsilverio@uagro.mx.
Abstract: Feature selection is a common solution to microarray analysis. Previous approaches either select features based on classical statistical tests that can be tuned up with a classifier, or using regularization penalties incorporated in the cost function. Here we propose to use a feature ranking and weighting scheme instead, which combines statistical techniques with a weighted k-NN classifier using a modified forward selection procedure. We demonstrate that classification accuracy of our proposal outperforms existing methods on a range of public microarray gene expression datasets. The proposed method is also compared to state-of-the-art feature selection algorithms by means of the Friedman test. Although a bunch of feature selection techniques has been used for genomic data, the experimental results show the classification superiority of our method on most of the present gene expression datasets.
Keywords: Computational genomics, microarray data analysis, feature selection, feature ranking, feature weighting, k-nearest neighbors
DOI: 10.3233/IDA-173720
Journal: Intelligent Data Analysis, vol. 23, no. 1, pp. 241-253, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl