Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Torgo, Luís; * | Gama, João
Affiliations: LIACC-University of Porto, R. Campo Alegre, 823-4150 Porto, Portugal
Correspondence: [*] Corresponding author. E-mail: ltorgo@ncc.up.pt, URL: http://www.ncc.up.pt/~ltorgo.
Abstract: This article presents an alternative approach to the problem of regression. The methodology we describe allows the use of classification algorithms in regression tasks. From a practical point of view this enables the use of a wide range of existing machine learning (ML) systems in regression problems. In effect, most of the widely available systems deal with classification. Our method works as a pre-processing step in which the continuous goal variable values are discretised into a set of intervals. We use misclassification costs as a means to reflect the implicit ordering among these intervals. We describe a set of alternative discretisation methods and, based on our experimental results, justify the need for a search-based approach to choose the best method. The discretisation process is isolated from the classification algorithm, thus being applicable to virtually any existing system. The implemented system (RECLA) can thus be seen as a generic pre-processing tool. We have tested RECLA with three different classification systems and evaluated it in several regression data sets. Our experimental results confirm the validity of our search-based approach to class discretisation, and reveal the accuracy benefits of adding misclassification costs.
Keywords: Regression, Classification, Discretisation methods, Pre-processing techniques
DOI: 10.3233/IDA-1997-1405
Journal: Intelligent Data Analysis, vol. 1, no. 4, pp. 275-292, 1997
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl